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Hydrodynamic interactions in a suspension of spherical particles confined between two
parallel planar walls are studied under creeping-flow conditions. The many-particle
friction matrix in this system is evaluated using our novel numerical algorithm based
on transformations between Cartesian and spherical representations of Stokes flow.
The Cartesian representation is used to describe the interaction of the fluid with the
walls and the spherical representation is used to describe the interaction with the
particles. The transformations between these two representations are given in a
closed form, which allows us to evaluate the coefficients in linear equations for the
induced-force multipoles on particle surfaces. The friction matrix is obtained from
these equations, supplemented with the superposition lubrication corrections. We
have used our algorithm to evaluate the friction matrix for a single sphere, a pair
of spheres, and for linear chains of spheres. The friction matrix exhibits a crossover
from a quasi-two-dimensional behaviour (for systems with small wall separation H )
to the three-dimensional behaviour (when the distance H is much larger than the
interparticle distance L). The crossover is especially pronounced for a long chain
moving in the direction normal to its orientation and parallel to the walls. In this
configuration, a large pressure build-up occurs in front of the chain for small values
of the gapwidth H , which results in a large hydrodynamic friction force. A standard
wall superposition approximation does not capture this behaviour.

1. Introduction
Numerous recent papers reflect a growing interest in the static and dynamic

properties of suspensions in confined geometries. There are investigations of the
formation of colloidal crystals on patterned and planar surfaces (Lin et al. 2000;
Seelig et al. 2002; Subramanian et al. 1999), studies of single-file diffusion of Brownian
particles in a channel (Wei et al. 2000), and experiments on quasi-two-dimensional
suspensions confined between two planar walls (Carbajal-Tinoco, Cruz de León &
Arauz-Lara 1997; Marcus, Schofield & Rice 1999; Lançon et al. 2001; Santana-
Solano & Arauz-Lara 2001). Quasi-two-dimensional suspensions of particles adsorbed
at a fluid interface (Zahn, Méndez-Alcaraz & Maret 1997; Rinn et al. 1999; Cichocki
et al. 2004) or confined in a thin liquid film (Sethumadhavan, Nikolov & Wasan 2001)
have also been examined.
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Experiments on quasi-two-dimensional systems revealed many striking phenomena
such as, for instance, the first-order transitions between fluid, hexatic and solid phases
(Marcus & Rice 1997), string-like cooperative motion of suspension particles (Marcus
et al. 1999), and oscillatory melting of a crystalline phase in shear flow (Stancik &
Hawkinson 2003). Other interesting examples include a logarithmic behaviour of the
mean-square displacement of Brownian particles in quasi-two-dimensional systems,
predicted by Cichocki & Felderhof (1994) and observed by Marcus et al. (1999);
a hydrodynamic enhancement of self-diffusion for strongly-charged particles (Zahn
et al. 1997; Pesché & Nägele 2000), and migration of particles in Poiseuille flow
towards the channel centre (Nott & Brady 1994; Lyon & Leal 1998).

The particle–wall and interparticle interaction potentials fully determine the
equilibrium structure of confined colloidal suspensions. The dynamics of such systems,
however, are significantly affected by the many-body hydrodynamic forces. For
spherical particles in an unbounded space, efficient algorithms for evaluating many-
body friction and mobility matrices have been developed (Durlofsky, Brady & Bossis
1987; Ladd 1988; Cichocki et al. 1994; Sierou & Brady 2001). Using the image
representation technique, such algorithms have been generalized for particles adsorbed
on a planar fluid–air interface (Cichocki et al. 2004) and for particles confined in a
thin liquid film (B�lawzdziewicz & Wajnryb 2003). The image-representation method
has also been proposed for a suspension bounded by a single rigid planar wall
(Cichocki & Jones 1998; Cichocki et al. 2000). A two-wall generalization of this
method (Bhattacharya & B�lawzdziewicz 2002a) and several other techniques were
used to describe the motion of an individual particle between two planar walls
(Ganatos et al. 1980a , b; Staben, Zinchenko & Davis 2003; Jones 2004).

The hydrodynamics of many particles in the two-wall geometry is much more
complex, and available results are limited. Durlofsky & Brady (1989) have developed
a method that combines boundary-integral and Stokesian-dynamics elements. In their
approach, the walls are discretized, and the particles are represented using low-order
force multipoles and lubrication contributions, as in the standard Stokesian-dynamics
algorithm (Durlofsky et al. 1987). It seems that this method has not been further
pursued. In an alternative approach, Nott & Brady (1994) and Morris & Brady (1998)
studied flows in wall-bounded suspensions by modelling the walls as static closely
packed arrays of spheres, and using the standard Stokesian-dynamics algorithm for
an unbounded system to evaluate the motion of the suspended particles. The results
obtained in this way are only qualitative, especially for small wall separations, because
the walls are porous and rough. A two-wall superposition approximation was used
by Pesché & Nägele (2000) and several other groups, but the validity range of this
approximation cannot be determined without comparison with more accurate results.

In our paper, we present a novel highly accurate algorithm to evaluate the many-
body hydrodynamic interactions in a suspension of spherical particles confined
between two planar walls. In our approach, the flow field in the system is expanded
using two basis sets of solutions of Stokes equations – the spherical and Cartesian
bases. The spherical basis is applied to describe the flow field scattered from the
particles, and the Cartesian basis is used in the analysis of the interaction of the flow
with the walls. The key result of our study is a set of transformation formulae for
conversion between the spherical and Cartesian representations. In our algorithm,
the expansion of the flow field into the basis fields is combined with the two-particle
superposition approximation for the friction matrix in order to incorporate slowly
convergent lubrication corrections. Since the force multipoles induced on particle
surfaces are included to arbitrary order, results of arbitrary accuracy are obtained.



Spherical particles between planar walls 265

Our paper is organized as follows. The induced-force formulation of the problem
is described in § 2, and the multipolar representation of the flow in terms of force
multipoles induced on the particles is recalled in § 3. Our main theoretical results
are outlined in § § 4 and 5. The Cartesian basis set of Stokes flows is defined in § 4,
along with the transformation relations between the Cartesian and spherical bases,
displacement theorems for the Cartesian basis fields and expressions for the wall-
reflection matrix. These essential elements are combined in § 5 to evaluate the wall
contribution to the Green’s matrix. The numerical implementation of our method is
outlined in § 6. Examples of numerical results (for single-particle, two-particle and
many-particle systems) are provided in § 7. The multiparticle results have been selected
to illustrate the crossover between the quasi-two-dimensional and three-dimensional
behaviour of the friction matrix as a function of the interparticle distance.

Since the full description of the theory underlying our algorithm requires more
space, this paper outlines only the most important elements and gives the crucial
results indispensable for the numerical implementation. The details of our theoretical
analysis and a more complete description of the algorithm are presented in
Bhattacharya, B�lawzdziewicz & Wajnryb (2005a, hereinafter referred to as in I).

2. Multiparticle hydrodynamic interactions
2.1. Hydrodynamic resistance

We consider a suspension of N spherical particles of the radius a in a creeping flow
between two parallel planar walls. The no-slip boundary conditions are assumed on
the particles and on the walls. The walls are at the positions z = 0 and z = H , where
H is the separation between walls, and r = (x, y, z) are the Cartesian coordinates. The
position of the centre of particle i is denoted by Ri = (Xi, Yi, Zi), the translational
and rotational particle velocities are denoted by U i and Ω i , and the external forces
and torques acting on the particle are denoted by Fi and Ti .

We focus on a system of spheres undergoing translational and rotational rigid-body
motion with no external flow. As in an unbounded space, the particle dynamics in
the system is characterized by the resistance matrix

ζ ij =

[
ζ tt

ij ζ tr
ij

ζ rt
ij ζ rr

ij

]
(i, j = 1, . . . , N), (2.1)

defined by the linear relation[
Fi

Ti

]
=

N∑
j=1

[
ζ tt

ij ζ tr
ij

ζ rt
ij ζ rr

ij

]
·
[

U j

Ωj

]
(2.2)

between the translational and rotational particle velocities and the forces and torques.
The dot in (2.2) denotes the matrix multiplication and contraction of the Cartesian
tensorial components of the resistance matrix.

2.2. Induced-force formulation

The effect of the suspended particles on the surrounding fluid can be described in
terms of the induced force distributions on the particle surfaces

Fi(r) = a−2δ(ri − a) f i(r), (2.3)

where

r i = r − Ri (2.4)
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and ri = |r i |. By definition of the induced force, the flow field

v(r) =

N∑
i=1

∫
T (r, r ′) · Fi(r ′) dr ′ (2.5)

is identical to the velocity field in the presence of the moving particles (Cox & Brenner
1967; Mazur & Bedeaux 1974; Felderhof 1976). Here,

T (r, r ′) = T 0(r − r ′) + T ′(r, r ′) (2.6)

is the Green’s function for the Stokes flow in the presence of the boundaries; the
Green’s function T (r, r ′) is decomposed into the Oseen tensor T 0(r − r ′) and the part
T ′(r, r ′) that describes the flow reflected from the walls. In (2.5), it is assumed that
the particles move with given velocities, but no external flow is imposed.

The resistance relation (2.2) is linked to the induced-force distributions (2.3) through
the expressions

Fi =

∫
Fi(r) dr, Ti =

∫
r i×Fi(r) dr, (2.7)

for the total force and torque, respectively. To determine the resistance matrix (2.1)
we thus must evaluate the induced forces (2.3) for given translational and angular
velocities of the particles.

2.3. Boundary-integral equations for the induced forces

For a system of particles moving with the translational and angular velocities U i and
Ω i , the induced-force distribution (2.3) can be obtained from the boundary-integral
equation of the form

[
Z−1

i Fi

]
(r) +

N∑
j=1

∫
[(1 − δij )T 0(r − r ′) + T ′(r, r ′)] · Fj (r ′) dr ′ = vrb

i (r) (r ∈ Si),

(2.8)
where

vrb
i (r) = U i + Ω i × r i (2.9)

is the rigid-body velocity field associated with the particle motion, and Si is the
surface of particle i. In the boundary-integral equation, (2.8), Zi denotes the one-
particle scattering operator that describes the response of an individual particle to an
external flow in an unbounded space. This operator is defined by the linear relation

Fi = −Zi

(
vin

i − vrb
i

)
, (2.10)

where vin
i is the velocity incident to particle i. For specific particle models, explicit

expressions for the operator Zi are known (Cichocki, Felderhof & Schmitz 1988;
Jones & Schmitz 1988; B�lawzdziewicz et al. 1999b).

3. Force-multipole expansion
3.1. Spherical basis fields

As in a standard force-multipole approach (Cichocki et al. 1994, 2000) the boundary-
integral equation, (2.8), is transformed into a linear matrix equation by projecting
it onto a spherical basis of Stokes flow. To this end we use the reciprocal basis
sets defined by Cichocki et al. (1988); we introduce, however, a slightly different
normalization to exploit the full symmetry of the problem.
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The singular and non-singular spherical basis solutions of Stokes equations v−
lmσ (r)

and v+
lmσ (r) (with l = 1, 2, . . .; m = −l, . . . , l; and σ = 0, 1, 2) have the following

separable form in the spherical coordinates r = (r, θ, φ):

v−
lmσ (r) = V −

lmσ (θ, φ)r−(l+σ ), (3.1a)

v+
lmσ (r) = V +

lmσ (θ, φ)rl+σ−1, (3.1b)

where the coefficients V −
lmσ (θ, φ) and V +

lmσ (θ, φ) are combinations of vector spherical
harmonics with angular order l and azimuthal order m. This property and the
r-dependence in (3.1) define the Stokes-flow fields v±

lmσ (r) up to a normalization

constant. Explicit expressions for the functions V ±
lmσ in our present normalization

are given in Appendix A. The justification for this choice of the normalization is
discussed in I.

Following Cichocki et al. (1988) we also introduce the reciprocal basis fields w±
lmσ (r),

defined here by the orthogonality relations of the form〈
δS
aw

±
lmσ

∣∣ v±
l′m′σ ′

〉
= δll′δmm′δσσ ′, (3.2)

where

δS
a (r) = a−2δ(r − a), (3.3)

and

〈A | B〉 =

∫
A∗(r) · B(r) dr. (3.4)

The asterisk in (3.4) denotes the complex conjugate. We note that owing to the proper
choice of defining properties of the spherical basis sets, the basis fields v−

lmσ and w+
lmσ

satisfy relation (Cichocki et al. 1988)

v−
lmσ (r) = η

∫
T 0(r − r ′)δS

a (r ′)w+
lmσ (r ′) dr ′, (3.5)

where η is the viscosity of the fluid. Relation (3.5) assures that the Lorentz reciprocal
symmetry of Stokes flow is reflected in the symmetry of the resulting matrix
representation of the problem (Cichocki et al. 2000).

3.2. Matrix representation

The matrix representation of the boundary-integral equation (2.8) is obtained by
expanding the force distributions induced on each particle into the induced-force
multipoles. The force multipolar moments of the force distribution (2.3) are defined
by the relation

Fi(r) =
∑
lmσ

fi(lmσ )a−2δ(ri − a)w+
lmσ (r i), (3.6)

where r i is the relative position (2.4) with respect to the particle centre. According to
(3.5) and (3.6), the multipolar moments fi(lmσ ) are identical (apart from the trivial
factor η) to the expansion coefficients of the flow field scattered by an isolated particle
in unbounded space into the singular basis fields v−

lmσ .
To obtain a linear matrix equation for the set of force multipolar moments fi(lmσ ),

the multipolar representation of the induced force (3.6) is inserted into the boundary-
integral equation, (2.8), and the resulting expression is expanded into the non-singular
basis solutions (3.1b). In particular, for the rigid-body velocity field we have

vrb
i (r) =

∑
lmσ

ci(lmσ )v+
lmσ (r i), (3.7)

where the expansion coefficients ci(lmσ ) are non-zero only for l = 1 and σ = 0, 1.
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As a result of this procedure, we obtain the linear force-multipole equation, which
can be written in the form

N∑
j=1

∑
l′m′

Mij (lm | l′m′) · fj (l′m′) = ci(lm). (3.8)

We use here a matrix notation in the three-dimensional linear space with the
components corresponding to the indices σ = 0, 1, 2 that identify the tensorial
character of the basis flow fields (3.1). Accordingly, the arrays fj (l′m′) and ci(lm) have
the components fj (l′m′σ ′) and ci(lmσ ) and the matrix Mij (lm | l′m′) has the elements
Mij (lmσ | l′m′σ ′), where σ, σ ′ = 0, 1, 2. The many-particle resistance matrix (2.1) can
be obtained by solving (3.8) and projecting the induced force multipoles onto the
total force and torque (2.7). Explicit expressions for the resistance matrix in terms of
the generalized friction matrix F = M−1 are given in Appendix B.

For a wall-bounded system the matrix M can be decomposed into three con-
tributions

Mij (lm | l′m′) = δij δll′δmm′Z−1
i (l) + G0

ij (lm | l′m′) + G′
ij (lm | l′m′). (3.9)

The first term Z−1
i (l) corresponds to the one-particle operator Z−1

i in (2.8). Accordingly,
the matrix Zi(l) relates the force multipoles fi(l

′m′) induced on particle i to the
coefficients in the expansion of the flow field incoming to this particle into the non-
singular spherical basis fields (3.1b). By spherical symmetry, this term is diagonal in
the multipolar orders l and m, and for rigid spheres it is explicitly known (Cichocki
et al. 1988).

The Green matrices G0
ij (lm | l′m′) and G′

ij (lm | l′m′) correspond to the integral

operators with the kernels T 0(r − r ′) and T ′(r, r ′) in (2.8). As discussed by Cichocki
et al. (2000) and by Bhattacharya et al. (2005a) the matrix G0

ij (lm | l′m′) coincides
(apart from the normalization factors) with the displacement matrix for spherical
basis fields, which is explicitly known (Felderhof & Jones 1989). The only unknown
component in expression (3.9) is thus the wall contribution

G′
ij (lmσ | l′m′σ ′) =

〈
δS
a (r i)w

+
lmσ (r i)

∣∣ v′
l′m′σ ′(rj )

〉
, (3.10)

where

v′
l′m′σ ′(r) =

∫
T ′(r, r ′)δS

a (r ′)w+
l′m′σ ′(r ′) dr ′. (3.11)

In the following sections we express this contribution in terms of the Cartesian basis
set of Stokes flows.

4. Cartesian representation
The difficulties associated with the evaluation of the matrix G′

ij in systems with

two planar walls stem from the incompatibility of the spherical basis fields v±
lmσ

with the wall geometry. In particular, the image representation of a force multipole
(Cichocki & Jones 1998; Bhattacharya & B�lawzdziewicz 2002a) is insufficient for
a two-wall system, owing to the slow convergence of the multiple-image series. We
propose here an alternative technique, which relies on a transformation between the
spherical basis fields (3.1) and a Cartesian basis set of Stokes flows. In the Cartesian
representation, the flow reflected from the walls can be obtained in a closed form;
thus the difficulties associated with the multiple-image series are avoided.
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According to our Cartesian representation method, the wall contribution (3.10) to
the matrix M is evaluated by (i) expanding the spherical basis flow field v−

l′m′σ ′(rj )
produced by a force multipole at the position rj into the Cartesian basis; (ii) solving
the two-wall problem in the Cartesian representation; and (iii) transforming the
resulting reflected flow back to the spherical basis (3.1b) centred at the position r i .
As a result of this procedure, the matrix elements (3.10) are expressed in terms of
two-dimensional Fourier integrals with respect to the lateral coordinates x, y. Our
method is outlined in the following sections.

4.1. Cartesian basis

To describe the flow field between two walls parallel to the (x, y)-plane, it is convenient
to use a basis set of Stokes flows of the separable form

v±
kσ (r) = V ±

kσ (z)eik·ρ±kz (4.1)

that is consistent with the wall geometry. Here,

ρ = x êx + y êy (4.2)

is the projection of the vector r onto the (x, y)-plane,

k = kx êx + ky êy (4.3)

is the corresponding two-dimensional wave vector, and k = |k|. By analogy to the
spherical basis (3.1), there exist three types of solution σ = 0, 1, 2 for each k. These
solutions involve a potential flow, a flow with non-zero vorticity, and a pressure-
driven flow. Explicit expressions for the coefficients V ±

kσ (z) are given in Appendix C.
To achieve a substantial simplification of our final results, the relative amplitudes of
the three components in the basis fields (4.1) have been carefully chosen, as discussed
in I.

4.2. Transformation relations

The transformation relations between the spherical and Cartesian sets of solutions of
Stokes equations can be expressed by the formulae

v−
lmσ (r) =

∫
dk′

∑
σ ′

v±
k′σ ′(r)T ±−

CS (k′, lm; σ ′ | σ ), ±z < 0, (4.4)

v±
kσ (r) =

∑
l′m′σ ′

v+
l′m′σ ′(r)T +±

SC (l′m′, k; σ ′ | σ ). (4.5)

As demonstrated in I, the transformation matrices T±−
CS (k, lm) and T+±

SC (lm, k) have
the factorized form

T+±
SC (lm, k) = (−i)m(2πk)−1/2e−imψK(k, l) · T̃+±

SC (lm), (4.6a)

T±−
CS (k, lm) = im(2πk)−1/2eimψ T̃

±−
CS (lm) · K(k, l), (4.6b)

where ψ is the polar angle in the Fourier space,

K(k, l; σ | σ ′) = δσσ ′kl+σ−1, (4.7)

and the matrices T̃
+±
SC (lm) and T̃

±−
CS (lm) are independent of the wave vector k. Owing

to the proper choice of the spherical and Cartesian fields, the transformation matrices
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T̃
+±
SC (lm) and T̃

±−
CS (lm) have a simple symmetric form

T̃
++

SC = [T̃
−−
CS ]† =


a b c

0 2a 2b

0 0 4a


 , (4.8a)

T̃
+−
SC = [T̃

+−
CS ]† = (−1)l+m


 c b a

−2b −2a 0
4a 0 0


 , (4.8b)

where the dagger denotes the Hermitian conjugate. The three independent scalar
coefficients in (4.8) are

a = [4(l − m)!(l + m)!(2l + 1)]−1/2, (4.9a)

b = 2am/l, (4.9b)

c = a
l(2l2 − 2l − 1) − 2m2(l − 2)

l(2l − 1)
. (4.9c)

4.3. Cartesian displacement formulae

In an analysis of the flow between the walls, it is convenient to use the Cartesian basis
fields centred at different positions (e.g. the particle or wall position). As shown in I,
the fields (4.1) centered at different points R1 and R2 are related by the displacement
formula

v±
kσ (r2) =

∑
σ ′

v±
kσ ′(r1)S

±±
C (R12, k; σ ′ | σ ), (4.10)

where r1 = r − R1, r2 = r − R2, and R12 = R1 − R2. Since the shift of the origin of
the coordinate system preserves the behaviour of the flow fields (4.1) at infinity, the
superscripts in (4.10) are either all positive or all negative. The displacement matrices
S±±

C (R12, k) can be factorized as follows,

S±±
C (R12, k) = S̃

±±
C (kZ12)e

ik·ρ12, (4.11)

where

S̃
−−
C (kZ) =


 1 0 0

0 1 0
−2kZ 0 1


 e−kZ, S̃

++

C (kZ) =


1 0 2kZ

0 1 0
0 0 1


 ekZ, (4.12)

and

R12 = ρ12 + Z12 êz. (4.13)

4.4. Single-wall reflection matrix

The Cartesian basis fields (4.1) are well suited to a description of the interaction
of the flow with planar walls because, owing to the translational invariance of the
problem, the lateral Fourier modes with different wave vectors k do not couple. The
effect of a single wall on the flow field in the system can be characterized in terms of
the one-wall reflection matrix Zw. To define this quantity we consider Stokes flow in
a fluid bounded by a single wall in the plane

z = Zw. (4.14)



Spherical particles between planar walls 271

The fluid occupies either the half-space z > Zw (denoted by Ω+) or z < Zw (denoted
by Ω−).

The velocity field in the half-space Ω± can be uniquely decomposed into the
incoming and reflected flows

v(r) = vin
w (r) + vout

w (r). (4.15)

The flow vin
w (r) is non-singular in the half-space Ω∓, and the flow vout

w (r) is non-
singular in the half-space Ω±. Thus these flows have the following expansions in the
Cartesian basis,

vin
w (r) =

∫
dk

∑
σ

cin
w (kσ )v±

kσ (rw), (4.16a)

vout
w (r) =

∫
dk

∑
σ

cout
w (kσ )v∓

kσ (rw). (4.16b)

Here,

rw = r − Rw (4.17)

denotes the position of the point r relative to the wall, where Rw = (Xw, Yw, Zw) has
arbitrary lateral coordinates Xw and Yw.

The single-wall scattering matrix Zw relates the expansion coefficients of the
incoming and reflected flows:

cout
w (k) = −Zw · cin

w (k), (4.18)

where cout
w (k) and cin

w (k) denote the arrays of expansion coefficients in (4.16). For a
rigid wall with no-slip boundary conditions we have

Zw =


1 0 0

0 1 0
0 0 1


 , (4.19)

as shown in I. For planar interfaces with other boundary conditions (e.g. a surfactant-
covered fluid–fluid interface discussed by B�lawzdziewicz et al. 1999a) the scattering
matrix can also be obtained.

5. Evaluation of the wall contribution to Green’s matrix
5.1. Single-wall system

The transformation, displacement, and reflection matrices described in § 4 can be
used to construct the matrix G′

ij for a suspension bounded by a single planar wall
or by two planar walls. For a single wall, the matrix (3.10) can be expressed by the
two-dimensional Fourier integral

G′
ij (lm | l′m′) =

∫
dk Ψ̃s(k; Ziw, Zwj )eik·ρij (5.1)

with the integrand of the form

Ψ̃s(k; Ziw, Zwj ) = −η−1T+∓
SC (lm, k) · S̃∓∓

C (kZiw) · Zw · S̃±±
C (kZwj ) · T±−

CS (k, l′m′), (5.2)

where Ziw = Zi − Zw and Zwj = Zw − Zj are the vertical offsets between the points i

and j and the wall.
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The physical interpretation of (5.2) is straightforward. First, the spherical
components of the flow produced by a multipolar force distribution at point j are
transformed by the matrix T±−

CS into the Cartesian basis. The Cartesian components

of the velocity field are propagated by the matrix S±±
C (Rwj ) to the wall, where they

are scattered, as represented by the matrix Zw. The reflected field is propagated by
the matrix S∓∓

C (Riw) to the point i, and, finally, the flow is transformed by the matrix

T+∓
SC back into the spherical basis.
Owing to symmetry properties of the component matrices (cf. relations (4.6), (4.8),

(4.12) and (4.19)) the wall contribution to the Green’s matrix (5.1) satisfies the Lorentz
symmetry

G′
ij (lm | l′m′) = G′ †

ji (l
′m′ | lm). (5.3)

We note that for the single-wall problem the Fourier integral (5.1) can be explicitly
performed, which yields the image-singularity result derived by Cichocki & Jones
(1998). As discussed in § 6, both the Fourier representation (5.1) and the result of
Cichocki & Jones (1998) are used in our algorithm to accelerate the convergence of
the two-wall integrals by a subtraction of the single-wall contributions.

5.2. Two-wall system

The single-wall result presented above can be generalized to the flow between two
parallel walls. We assume that the walls are in the planes

z = ZL, z = ZU, (5.4)

where

ZL < ZU. (5.5)

The two-wall Green’s matrix (3.10) can be expressed in the form analogous to (5.1)
and (5.2), i.e.

G′
ij (lm | l′m′) =

∫
dk Ψ̃ (k; ZiL, ZjL, ZLU)eik·ρij , (5.6)

Ψ̃ (k; ZiL, ZjL, ZLU) = −η−1TSC(lm, k) · S̃iW(k) · Z̃TW(k) · S̃Wj (k) · TCS(k, l′m′), (5.7)

where the component matrices are given by

TCS(k, lm) =

[
T+−

CS (k, lm)

T−−
CS (k, lm)

]
, (5.8a)

TSC(lm, k) = [T+−
SC (lm, k) T++

SC (lm, k)], (5.8b)

S̃Wj (k) =

[
S̃

++

C (kZLj ) 0

0 S̃
−−
C (kZUj )

]
, (5.9a)

S̃iW(k) =

[
S̃

−−
C (kZiL) 0

0 S̃
++

C (kZiU)

]
, (5.9b)

and

Z̃TW(k) =

[
Z−1

w S̃
++

C (kZLU)

S̃
−−
C (kZUL) Z−1

w

]−1

. (5.10)
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The physical interpretation of (5.7) is similar to the interpretation of (5.2), except
that two separate sets of expansion coefficients are now used for the flow field incoming
to the lower and upper walls, which is reflected in the corresponding block structure
of matrices (5.8)–(5.10). The matrix TCS(k, l′m′) transforms the field produced by a
force multipole at the position Rj into the Cartesian basis; the basis fields v+

kσ are
used in the region Z < zj and the basis fields v−

kσ in the region Z > zj , consistent with
(4.4). The Cartesian fields are then translated to the positions of the respective walls
by the matrix S̃Wj (k). The matrix Z̃TW(k), defined by (5.10), describes the interaction
of the flow field with both walls. We note that this matrix involves the displacements

matrices S̃
−−
C (kZUL) and S̃

++

C (kZLU), which correspond to the propagation of the flow
field between the walls in the multiple-reflection process. After reflection from the
walls is completed, the matrix S̃iW(k) propagates the flow field to the target point i,
and the matrix TSC(lm, k) transforms it back into the spherical representation.

Owing to the symmetries of the 3 × 3 transformation and displacement matrices,
the corresponding symmetry relations

TCS(k, lm) = [TSC(lm, k)]†, (5.11a)

S̃Wi(k) = [S̃iW(k)]†, (5.11b)

Z̃TW(k) = [Z̃TW(k)]† (5.11c)

are satisfied by the matrices (5.8)–(5.10). Equation (5.7) thus implies that the Green’s
matrix (5.6) satisfies the Lorentz symmetry (5.3).

6. Numerical implementation
The evaluation of the resistance matrix ζAB

ij from relations given in Appendix B
requires the solving of the linear algebraic equation (3.8) for the array of induced-
force multipolar moments in order to obtain the generalized friction coefficients
Fij (lmσ | l′m′σ ′). In expression (3.9) for the matrix Mij the single particle scattering
matrix Zi and the unbounded-space Green’s matrix G0

ij are known explicitly (Cichocki
et al. 1988; Felderhof & Jones 1989). The remaining term – the two-wall contribution
G′

ij – is evaluated numerically, using relations (5.6)–(5.10) along with our expressions
for the Cartesian displacement matrices (4.12), the transformation matrices (4.8), and
the single-wall scattering matrix (4.19).

Taking into account the structure (4.6) of the transformation matrices T+∓
SC and

T±−
CS , the angular integral in (5.1) can be performed analytically. The integration yields

the result in the form of a Hankel transform of the order m′ − m. Accordingly, only
a one-dimensional integral in (5.6) has to be performed numerically. The numerical
integration is straightforward when the lateral separation between particles i and
j is small compared to the wall separation. For large interparticle separations ρij ,
however, the integration is more difficult owing to the oscillatory behaviour of the
integrand.

To avoid numerical integration of a highly oscillatory function, the Fourier
amplitude in (5.6) is decomposed

Ψ̃ (k) = Ψ̃L(k) + Ψ̃U(k) + δΨ̃ (k) (6.1)

into the superposition of the single-wall contributions Ψ̃L and Ψ̃U, and the remaining
part δΨ̃ representing hydrodynamic interactions between the walls. From an analysis
of (5.2) we find that the magnitude of the single-wall Fourier amplitudes Ψ̃L(k) and



274 S. Bhattacharya, J. B�lawzdziewicz and E. Wajnryb

Ψ̃U(k) for large k is

Ψ̃α(k) ∼ exp
(
−k∆

(α)
ij

)
(α = L, U), (6.2)

where ∆
(α)
ij is the vertical offset between the point i and the reflection of point j in

the wall α. In contrast, the large-k behaviour of the wall-interaction part of Fourier
amplitude (6.1) is

δΨ̃ (k) ∼ exp(−k∆̃ij ), (6.3)

where

∆̃ij = 2H − |Zij | > H. (6.4)

The lengthscale ∆̃ij equals the vertical offset |Zi − Z′′
j | between the target point i and

the closer of the two second-order images of the source point j . Since δΨ̃ (k) decays
on the wave-vector scale set by the distance between the walls H > min(∆(L)

ij , ∆
(U)
ij ), a

smaller number of oscillations of the Fourier modes contribute to the integral after
the single-wall terms have been subtracted.

In our algorithm, the short-range function δΨ̃ (k) is integrated numerically. The
one-wall contributions Ψ̃L(k) and Ψ̃U(k) are evaluated analytically, using the explicit
image-representation expressions derived in Cichocki & Jones (1998). In this way
we avoid integrating a highly oscillatory function when the particles are close to
a wall. The procedure can be further improved, either by subtracting several terms
associated with higher-order wall reflections of the source multipole (Bhattacharya &
B�lawzdziewicz 2002a), or by using asymptotic formulae for the integrals (5.6). We have
recently derived a complete set of such expressions (Bhattacharia, B�lawzdziewicz &
Wajnryb 2005b).

In order to improve convergence with the order lmax of the multipoles included in the
calculation we employ a standard technique, originally introduced by Durlofsky et al.
(1987). Accordingly, the lubrication forces that cause a slow convergence of the results
with lmax are included in the friction matrix using a superposition approximation. Both
the interparticle and particle–wall lubrication corrections are included in this way.
Following the implementation of this method by Cichocki et al. (2000) for a single
wall problem, we represent the elements of resistance matrix ζ ij in the form

ζ ij = ζ
sup,2
ij + ζ

sup,w
ij + ∆ζ ij . (6.5)

Here ζ
sup,2
ij denotes the superposition of two-particle resistance matrices evaluated for

isolated particle pairs in the unbounded space, and

ζ
sup,w
ij = δij

∑
α=L,U

ζ α
i (i) (6.6)

is the superposition of one-particle contributions in the presence of individual walls.
The one-particle contributions can be evaluated using a series expansion of resistance
coefficients in inverse powers of particle–wall separation (Cichocki & Jones 1998)
in combination with the appropriate lubrication results (Kim & Karrila 1991). The
two-particle superposition contributions ζ

sup,w
ij are evaluated in a similar way. The

convergence with the multipolar truncation order lmax for the quantity ∆ζ ij is fast;
some convergence tests are presented in I.

In the present implementation of our method, the numerical cost scales as O(N 3)
with the number of particles N , because the linear equation (3.9) is solved by
inversion of the matrix M. However, the numerical efficiency of our algorithm can be
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Figure 1. Lateral and vertical components of the translational friction matrix (7.3) for a single
sphere between two parallel walls, versus dimensionless gap (7.4). Centre particle position
h = H/2 (solid line); off-centre position h = H/3 (dashed line). Dotted lines represent the
lubrication results (7.5).

substantially improved by applying fast-multipole or PPPM acceleration methods in
combination with asymptotic expressions for the elements of the matrix M.

7. Results
In this section we present a set of numerical results for hydrodynamic interactions in

systems of spherical particles confined between two parallel planar walls. Our goal is
both to illustrate typical behaviour of the hydrodynamic friction matrix for particles in
the confined region, and to demonstrate the capabilities of our numerical algorithm.
The results for a single particle and for pairs of particles, shown in figures 1–8,
were obtained using the multipolar approximation with the truncation at the order
lmax = 12. This truncation is sufficient to obtain results with the accuracy better than
the resolution of the plots, even for the smallest wall separation H considered. The
multi-particle results in figures 9–11 were obtained using lmax = 8.

7.1. Single particle

In figure 1, the lateral and vertical friction coefficients

ζ‖ = ζ tt xx
11 = ζ

tt yy

11 , ζ⊥ = ζ tt zz
11 (7.1)

are shown for a single particle at the centre and off-centre positions

h = 1
2
H, h = 1

3
H, (7.2a, b)

where h is the distance of the particle from the lower wall. The results are normalized
by the Stokes friction coefficient ζ0 = 6πηa,

ζ̄‖ = ζ‖/ζ0, ζ̄⊥ = ζ⊥/ζ0, (7.3)

and are plotted versus the normalized gap

ε = h/a − 1 (7.4)

between the particle and the lower wall. As expected, for small values of the gap,
the lateral and vertical resistance coefficients approach the asymptotic lubrication
behaviour (in figure 1 indicated by dotted lines). For h = H/2 the lubrication
behaviour is

ζ̄‖ = − 16
15

log ε + C
(

1
2

)
, ζ̄⊥ = 2ε−1, (7.5a)
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where the singular terms correspond to the superposition of two particle–wall
lubrication regions (cf. lubrication expressions given by Cichocki & Jones 1998).
For the off-centre position h = H/3 there is only one lubrication region, thus

ζ̄‖ = − 8
15

log ε + C
(

1
3

)
, ζ̄⊥ = ε−1. (7.5b)

A comparison of the numerical results shown in figure 1 with the asymptotic behaviour
(7.5) yields C(1/2) = 1.45 and C(1/3) = 1.49.

We note that our one-particle results agree with the numerical calculation by
Ganatos et al. (1980a , b) and with our earlier results (Bhattacharya & B�lawzdziewicz
2002b) obtained by an image-representation method (Bhattacharya & B�lawzdziewicz
2002a).

7.2. Two particles

Sample results for the translational components of the two-particle resistance matrix

ζ̄
αβ
ij = ζ

tt αβ
ij /ζ0 (i, j = 1, 2), (7.6)

(where α, β = x, y, z) are presented in figures 2–8. The results in figures 2–4 are
shown for horizontal particle configurations h1 = h2 = h, where hi is the distance
of particle i from the lower wall. As for a single sphere, we consider the centre and
off-centre positions (7.2). The relative horizontal displacement of the particles is

ρ12 = ρ12 êx. (7.7)

To emphasize the crossover between the three-dimensional behaviour for ρ12 � H

and a quasi-two-dimensional behaviour for ρ12 � H , we discuss our results in terms
of the dimensionless variables scaled by the distance between the walls H ,

ρ̃ = ρ12/H, ã = a/H, L̃ = ρ̃ − 2ã. (7.8a–c)

The resistance coefficients in figures 2–4 are plotted versus the dimensionless
separation between the particle surfaces L̃.

Self-resistance coefficients

Figures 2 and 3 illustrate the behaviour of the diagonal components of the
translational self- and mutual resistance matrices ζ̄ αα

11 and ζ̄ αα
12 , respectively, and

figure 4 shows the off-diagonal elements ζ̄ xz
11 and ζ̄ xz

12 . The remaining coefficients of
the two-particle translational resistance matrix either vanish or can be related to the
above coefficients by symmetry.

The results for the resistance coefficients ζ̄ αα
11 presented in figure 2 are scaled by the

corresponding single-particle friction coefficients (7.3). For small distances between
the particle surfaces L̃ � ã the longitudinal resistance coefficient ζ̄ xx

11 is dominated
by the O(L̃−1) interparticle lubrication friction; the lubrication behaviour of the
components transverse to the direction of the line connecting the particle centers is
ζ̄

yy

11 , ζ̄ zz
11 ∼ log L̃.

In the intermediate regime ρ̃ ≈ 1, the two-particle friction matrix undergoes
a crossover to a quasi-two-dimensional far-field asymptotic behaviour at large
interparticle distances. A signature of the crossover is the kink seen in the plot of ζ̄

yy

11

for the particles at the centre position h = H/2. For large interparticle separations
ρ̃ � 1, the lateral components of the self-friction matrix approach the one-particle
asymptotic value as

ζ̄ xx
11 ≈ ζ̄

yy

11 = ζ̄‖ + O(ρ̃−4) (ρ̃ � 1). (7.9)
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Figure 2. Diagonal components of translational self-resistance matrix (7.6) for pairs of
particles between two planar walls, scaled by corresponding one-particle values, versus
dimensionless distance (7.8c) between particle surfaces. Walls are in planes z = 0, H , and
particles are on axis x. The left- and right-hand panels correspond to centre (h = H/2)
and off-centre (h = H/3) particle configurations, respectively. Dimensionless gap between the
particles and the closer wall ε = 0.02 (solid line); ε = 0.1 (long-dashed); ε = 1.0 (dash-dotted);
ε = 4 (short-dashed); ε = 16 (dotted).

This result stems from the far-field behaviour of the disturbance velocity produced
by the particles. For the lateral motion, the far-field disturbance decays as O(ρ̃−2),
as shown in I. Since the contribution of the second particle to the self-components
of the friction matrix ζ̄ αα

11 involves the field scattered back to the first particle,
the asymptotic behaviour (7.9) is obtained. In contrast, the disturbance field
corresponding to the vertical motion decays exponentially, which yields an exponential
approach of the vertical component of the friction matrix ζ̄ zz

11 to the one-particle
value ζ̄⊥.
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Figure 3. As figure 2, except for mutual components of the resistance matrix. The lateral
components ζ̄ xx

12 and ζ̄
yy
12 are scaled by the asymptotic result ζ̄ ∞

12 = Aρ̃−2 corresponding to
(7.10), and the vertical component is ζ̄ zz

12 unscaled.

Mutual resistance coefficients

An analogous reasoning applied to the mutual components of the friction matrix
yields the asymptotic behaviour

ζ̄
yy

12 ≈ −ζ̄ xx
12 = Aρ̃−2 + O(ρ̃−4) (ρ̃ � 1), (7.10)

where the amplitude A > 0 depends on the size of the particles and on their vertical
positions in the gap. Note that the sign of the transverse resistance coefficient ζ̄

yy

12 at
large interparticle distances is opposite to the sign of the corresponding coefficient in
the unbounded space.

The results for ζ̄ xx
12 and ζ̄

yy

12 shown in figure 3 are scaled using (7.10), with the
amplitude A plotted in figure 5 (discussed below). Since ζ̄ zz

12 decays exponentially
for large ρ̃, the results for this component are presented unscaled. Similar to the
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Figure 4. Cross-components of self- and mutual resistance matrix (7.6) for the off-centre
particle configuration h = H/3. Dimensionless particle–wall gaps ε corresponding to different
lines are the same as in figure 2.
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Figure 5. Amplitude A of the O(ρ̃−2) far-field asymptotic behaviour (7.10) of the mutual
resistance matrix, versus particle size normalized by distance between walls ã = a/H . Centre
particle configuration h1 = h2 = H/2 (solid line); off-centre configuration h1 = h2 = H/3
(dashed line). Circles represent the corresponding asymptotic values (7.11).

results in figure 2 for the self-resistance matrix, the diagonal components of
the mutual resistance matrix have a lubrication singularity for particles in contact,
and for ρ̃ = O(1) they exhibit a crossover to the asymptotic O(ρ̃−2) far-field behaviour
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Figure 6. Diagonal components of translational self-resistance matrix for skew configurations
(7.12) of a particle pair between two walls separated by distance H/2a = 2, versus normalized
particle–wall gap (7.4). The results are scaled by the value (7.13) for the centre position, which
corresponds to ε = 1. Lateral particle separation ρ12/2a = 1.01 (solid lines); 1.1 (dashed); 2
(dash-dotted); 5 (dotted).

in the regime ρ̃ � 1. The near-field and far-field region are most pronounced for
large values of the particle–wall gap ε (i.e. for ã � 1) because of the length-scale
separation.

Cross-terms

The cross-elements of the self- and mutual friction matrix ζ̄ xz
11 and ζ̄ xz

12 are shown
(unscaled) in figure 4. Since for the centre particle position (7.2a) these components
vanish by symmetry, the results are presented only for the off-centre configuration
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Figure 7. As figure 6, except for mutual friction coefficients.

(7.2b). The non-zero values of the cross-resistance coefficients ζ̄ xz
11 and ζ̄ xz

12 arise
indirectly, owing to the asymmetry of the flow field scattered from the walls. Therefore,
for L̃ = 0 there is no lubrication singularity. The cross-resistance coefficients involve
vertical particle motion; thus, for large interparticle separations ζ̄ xz

11 and ζ̄ xz
12 decay

exponentially.

Amplitude of the far-field asymptotic behaviour

The behaviour (7.9) and (7.10) of the two-particle resistance coefficients for ρ̃ � 1
is consistent with the asymptotic expressions derived by Liron & Mochon (1976) for
the far-field flow produced by Stokeslets oriented in the direction parallel and normal
to the walls. Using the Liron–Mochon expression and applying the Stokes resistance
formula to evaluate forces acting on small particles in the space between the walls
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Figure 8. As figure 6, except for self- and mutual cross-friction coefficients, and the results
are unscaled.

yields the asymptotic behaviour (7.10), with the amplitude given by

A

ã
= 9h̃1(1 − h̃1)h̃2(1 − h̃2) + O(ã), (7.11)

where h̃i = hi/H . Figure 5 shows the dependence of the far-field amplitude A on the
dimensionless particle size ã; the limiting result (7.11) is indicated by circles.

We emphasize that the far-field form of the disturbance flow produced by particles
in a domain bounded by parallel walls, and the corresponding properties of the
resistance matrix are important for understanding the macroscopic dynamics of
suspensions in slit-pore geometries. A more detailed analysis of this problem will be
given elsewhere.

Skew configurations

So far we have focused on horizontal particle configurations with both particles at
the same distance from the walls. In figures 6–8 we consider skew configurations with
the vertical positions

h1 = h, h2 = H − h. (7.12)

Figures 6 and 7 show the diagonal components ζ̄ αα
11 and ζ̄ αα

12 of the self- and mutual
resistance matrices, and figure 8 presents the off-diagonal components ζ̄ xz

11 and ζ̄ xz
12 .

The results are plotted versus the normalized particle–wall gap (7.4).
The diagonal resistance coefficients ζ̄ αα

ij in figures 6 and 7 are scaled by the value

ζ̄ c αα
ij = ζ̄ αα

ij

(
h = 1

2
H

)
, (7.13)
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ρ12/2a ζ̄ c xx
11 ζ̄

c yy

11 ζ̄ c zz
11 ζ̄ c xx

12 ζ̄
c yy

12 ζ̄ c zz
12

1.01 15.08 2.31 3.26 −13.75 −0.51 −0.24
1.1 3.35 1.98 2.95 −1.99 −0.117 0.132
2.0 1.93 1.87 2.80 −0.368 0.200 0.117
5.0 1.85 1.85 2.79 −0.064 0.063 0.00015

Table 1. Normalization factors (7.13) for the configurations represented in figures 6 and 7.

corresponding to the centre configuration of the particle pair at a given lateral
separation ρ12 and wall-to-wall distance H . The resistance coefficients for the centre
configuration (7.13) have been discussed above; the values of the normalization factors
for the parameter values represented in figures 6 and 7 are given in table 1.

For large lateral interparticle distances, the self-resistance coefficients, shown in
figure 6, approach the corresponding one-particle results. We note that owing to the
fast asymptotic approach (7.9), the results for ρ12/2a = 5 essentially coincide with the
one-particle values. For small particle–wall gaps, the lateral coefficients ζ̄ xx

11 and ζ̄
yy

11

exhibit the logarithmic lubrication singularity, and the vertical component ζ̄ zz
11 has the

1/ε singularity. The rapid variation of the longitudinal coefficient ζ̄ xx
11 in the regime

ε ≈ 1 (centre particle positions) for ρ12/2a = 1.01 results from the strong lubrication
interaction between the particles. The same remark applies to the mutual longitudinal
coefficient ζ̄ xx

12 shown in figure 7.
According to the results in table 1, the mutual resistance coefficients approach

zero for large interparticle distances. The far-field behaviour is consistent with the
asymptotic expression (7.10) for the lateral components ζ̄ xx

12 and ζ̄
yy

12 and the asymptotic
exponential decay for the vertical component ζ̄ zz

11 . We note that for small and moderate
interparticle distances there is no simple relation between the components ζ̄ xx

12 and
ζ̄

yy

12 ; however, ζ̄
yy

12 ≈ −ζ̄ xx
12 for ρ̃ � 1, in agreement with (7.10).

The off-diagonal components ζ̄ xz
11 and ζ̄ xz

12 , shown unscaled in figure 8, are
exponentially small for ρ̃ � 1. For both particles at the centre of the space between
the walls these components vanish by symmetry.

7.3. Multi-particle systems

In figures 9–11 we present some results for hydrodynamic resistance functions of rigid
linear arrays of N touching spheres. The spheres are positioned on a line parallel to
the axis x at the centre of the space between the walls, i.e.

hi = 1
2
H (i = 1, . . . , N). (7.14)

The diagonal components of the translational resistance matrix of the array treated
as a single rigid body, evaluated per one sphere,

ζ̄ αα
C = (Nζ0)

−1

N∑
i,j=1

ζ tt αα
ij (α = x, y, z), (7.15)

are plotted in figure 9 versus the number of spheres N in the chain. The results
for the longitudinal and transverse components ζ̄ xx

C and ζ̄
yy

C are shown normalized
by the lateral one-particle resistance coefficient ζ̄‖; the vertical component ζ̄ zz

C is
normalized by ζ̄⊥. The results indicate that for large separations between the walls,
when compared to the chain length, all three components of the resistance matrix ζ̄ αα

C
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Figure 9. Resistance coefficients per particle (7.15) of rigid linear arrays of touching spheres
on a line parallel to axis x at the centre position (7.14), scaled by corresponding one-particle
values (7.3), versus number of spheres N . Dimensionless gap between the particles and walls
ε = 0.02 (solid circles); ε = 0.1 (open circles); ε = 1.0 (solid squares); ε = 4 (open squares);
ε = 16 (solid triangles); ε = ∞ (open triangles).

decrease monotonically with N , and behave as 1/ log N for 1 � N � H/2a. We also
find that ζ̄

yy

C � ζ̄ zz
C � 2ζ̄ xx

C in this regime (B�lawzdziewicz et al. 2005).
For moderate and small values of the wall–wall distance H , however, the behaviour

of each component ζ̄ αα
C of the chain resistance matrix is qualitatively different. The

longitudinal component ζ̄ xx
C decreases monotonically with N , which is similar to

the behaviour in the unbounded space, but the variation is smaller. The vertical
component ζ̄ zz

C initially increases with N , and then saturates at a constant value that
depends on the wall separation H . In contrast, for small H , the transverse component
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Figure 10. Resistance coefficients (7.16a) representing the total forces (7.17a) on individual
spheres in the chain of length N = 20, scaled by corresponding one-particle values (7.3), versus
particle number in the chain. The configuration of the chain and the dimensionless particle-wall
gaps ε are the same as in figure 9.

ζ̄
yy

C increases linearly with N in the range of chain lengths shown. Additional numerical
simulations for chains with length up to N = 100 (not presented) indicate that the
resistance coefficients ζ̄

yy

C eventually saturate for large N . We note that the standard
wall superposition approximation entirely misses this behaviour (Bhattacharya et al.
2005a).

A better insight into the mechanisms underlying the above-illustrated qualitative
features of the resistance matrix can be gained from the set of more detailed results
for a chain of length N = 20 plotted in figures 10 and 11. In these figures, we show
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Figure 11. As figure 10, except for resistance coefficients (7.16b) representing the total torques
(7.17b) on individual spheres, and the results are plotted unscaled. Only half of the chain is
shown; the resistance coefficients are antisymmetric with respect to the chain centre.

the resistance coefficients

ζ̄ αα
F (i) = ζ −1

0

N∑
j=1

ζ tt αα
ij (α = x, y, z), (7.16a)

and

ζ̄
βα

T (i) = 3
2
(aζ0)

−1

N∑
j=1

ζ
rt βα
ij (βα = zy, yz), (7.16b)

representing the normalized applied force and torque

Fi = êαζ̄
αα
F (i), Ti = êβ ζ̄

βα

T (i), (7.17a, b)

acting on particle i in a chain moving in the direction α with a unit velocity. By
symmetry, the forces act only in the direction of the chain motion, and the only
non-zero torque coefficients are those given in (7.16b).

According to the results shown in figure 10 for the motion in the x-direction, the
forces acting on the first and the last particle in the chain are larger than the forces
acting on the particles in the chain interior. This behaviour is similar for chains in
the unbounded and the wall-bounded regions. The forces are smaller for long chains,
because the particles collectively drag the fluid in the direction of the chain velocity.
This mechanism is diminished, but not eliminated by the wall presence.
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In an unbounded space, the force distribution in a chain moving in the transverse
direction y is qualitatively similar to the distribution for the longitudinal motion
discussed above. In the wall-bounded region the results are, however, considerably
different: the forces near the centre of the chain are much larger than the forces near
the chain ends. This behaviour, clearly seen in figure 10 for H/2a � 2, stems from
the conservation of the fluid volume. The chain moving in the transverse direction
acts like a piston pushing fluid along the space between the walls, thus producing
a pressure-driven flow decaying on the length scale l = 2aN . The pressure increases
linearly with the chain length until it is large enough to push the fluid back through
the gap between the walls and the particles. At this point, the pressure becomes
independent of N . The pressure produced by this mechanism is responsible for the
large resistance coefficient ζ̄

yy

C of long chains in transverse motion between closely
spaced walls, as shown in figure 9.

For a chain moving in the direction z (normal to the walls) in a system with a
small value of the wall–particle gap ε, the resistance coefficients ζ̄ zz

F are dominated by
the lubrication forces between the walls and the individual particles. The coefficients
ζ̄ zz

F are the smallest for the spheres at the chain ends, as seen in figure 10, unlike for
chains in the infinite space. This behaviour stems from the presence of the geometrical
constraints – the resistance is smaller where there is more room for the fluid to escape
from the gaps between the walls and the particles.

The geometrical-parameter dependence of the torque acting on individual spheres
in a translating chain is less varied, as illustrated in figure 11. In all configurations
considered, we find that the torque on the interior spheres is much smaller than the
torque at the chain ends. An interesting feature is the sign change of the torque acting
on the particle i = 2 for the coefficient ζ̄

yz

T .

8. Conclusions
Many-body hydrodynamic interactions in suspensions of spherical particles

confined between two parallel planar walls have been studied here theoretically
and numerically. Our primary theoretical result is a set of compact expressions for
the multipolar matrix elements of the Green’s integral operator for Stokes flow in the
space between the walls. The matrix elements are given in the form of lateral Fourier
integrals of products of several simple matrices.

Our expressions have been used to develop an algorithm for evaluating many-
particle hydrodynamic friction and mobility matrices in a wall-bounded suspension.
The algorithm involves solving a set of linear equations for the multipolar moments
of the force distributions induced on the particles. The resulting friction matrix is
corrected for the lubrication forces by using a superposition of particle–particle and
particle–wall contributions. Our algorithm yields highly accurate results – for example,
the results presented in this paper have been obtained with an accuracy better than
1 %. We note that at each truncation of the force-multipole expansion, the boundary
conditions at the walls are exactly satisfied. This feature is essential for obtaining a
proper far-field behaviour of the friction matrix, including the strong backflow effects
seen for rigid arrays of spheres.

Our numerical algorithm has been used to evaluate the hydrodynamic resistance
matrix for a single particle, a pair of particles, and a system of many particles confined
between two planar walls. The problem of hydrodynamic interactions in the two-wall
geometry involves several characteristic lengthscales: the particle radius a, the wall–
wall distance H , and the lateral distance between the particles ρ. For ρ � H , the
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interactions between particles are similar to those in the infinite space. For ρ ≈ H ,
the crossover occurs to a quasi-two-dimensional behaviour in the regime ρ � H .

In the quasi-two-dimensional domain, the vertical components of the mutual pair
resistance matrix decay exponentially, and the lateral components behave as O(ρ−2).
Moreover, the sign of the transverse component of the resistance matrix is opposite
to the sign of this component for a pair of particles in infinite space. As discussed
here and in Bhattacharya et al. (2005a), this behaviour can be explained using the
asymptotic Hele-Shaw (lubrication) form of the far-field flow produced by a moving
particle.

The crossover behaviour is particularly pronounced for rigid arrays of spheres
arranged along a line parallel to the walls. In the regime a � l � H , where l is
the chain length, the hydrodynamic friction force per particle decreases as (log l)−1

for large l, similar to the behaviour in the infinite space. In contrast, for l � H ,
the longitudinal component of the friction tensor (per particle) and the component
normal to the walls tend to constant values. Moreover, for small particle–wall gaps,
the transverse component (normal to the chain but parallel to the walls) increases
linearly with the chain length before it saturates at a value that is much higher than
the corresponding value for the longitudinal motion.

As discussed in Bhattacharya et al. (2005a), the standard wall-superposition
approximation is insufficient for many problems. The resistance matrix in such an
approximation is composed from two single-wall contributions. In particular, the
superposition approximation yields a wrong sign of the transverse component of the
mutual pair resistance matrix and a wrong far-field behaviour of all components of
this matrix. The approximation also fails to reproduce the striking increase with the
number of particles for the transverse resistance coefficient of linear arrays of spheres.

The numerical efficiency of our method can be substantially improved by combining
our Cartesian representation of the wall contribution to the Green’s matrix with the
asymptotic far-field expressions for this quantity (Bhattacharya et al. 2005b). The
asymptotic formulae can be expressed in terms of multipolar solutions of Laplace’s
equation for a two-dimensional pressure field corresponding to the lubrication flow
in the space between the walls. These expressions do not involve Fourier integrals,
and they can be implemented relatively easily in numerical algorithms for periodic
systems and in accelerated PPPM or fast-multipole algorithms.

S. B. would like to acknowledge the support by NSF grant CTS-0201131. E. W. was
supported by NASA grant NAG3-2704 and in part by KBN grant 5T07C 035 22. J. B.
was supported by NSF grant CTS-0348175 and by the Hellman Foundation.

Appendix A. Spherical basis
The spherical basis of Stokes flows v±

lmσ and the reciprocal basis fields w±
lmσ used in

the present paper are normalized differently from the corresponding basis fields v
±(CFS)
lmσ

and w
±(CFS)
lmσ introduced by Cichocki et al. (1988). The relations between these sets of

basis functions are as follows:

v−
lmσ (r) = N−1

lσ n−1
lm v

−(CFS)
lmσ (r), v+

lmσ (r) = Nlσn−1
lm v

+(CFS)
lmσ (r), (A 1a)

w−
lmσ (r) = Nlσnlmrw

−(CFS)
lmσ (r), w+

lmσ (r) = N−1
lσ nlmrw

+(CFS)
lmσ (r), (A 1b)

where

Nl0 = 1, Nl1 = −(l + 1)−1, Nl2 = l[(l + 1)(2l + 1)(2l + 3)]−1, (A 2)
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and

nlm =

[
4π

2l + 1

(l + m)!

(l − m)!

]1/2

. (A 3)

Below we list the explicit expressions for the angular coefficients V ±
lmσ (θ, φ) for

spherical basis fields (3.1) in our present normalization,

V −
lm0 =

1

(2l + 1)2

[
l + 1

l(2l − 1)
αlY l l−1 m − 1

2
Y l l+1 m

]
, (A 4a)

V −
lm1 =

i

l + 1
γlY l l m, (A 4b)

V −
lm2 = βlY l l+1 m, (A 4c)

and

V +
lm0 = αlY l l−1 m, (A 5a)

V +
lm1 =

i

l + 1
γlY l l m, (A 5b)

V +
lm2 =

l

2(2l + 1)
αlY l l−1 m +

l

(l + 1)(2l + 1)(2l + 3)
βlY l l+1 m, (A 5c)

where

Y ll−1m(r̂) = α−1
l r−l+1∇[rlYlm(r̂)], (A 6a)

Y ll+1m(r̂) = β−1
l r l+2∇

[
r−(l+1)Ylm(r̂)

]
, (A 6b)

Y llm(r̂) = γ −1
l r × ∇Ylm(r̂) (A 6c)

are the normalized vector spherical harmonics, as defined by Edmonds (1960). Here

Ylm(r̂) = n−1
lm (−1)mP m

l (cos θ)eimϕ (A 7)

are the normalized scalar spherical harmonics, and

αl = [l(2l + 1)]1/2, βl = [(l + 1)(2l + 1)]1/2, γl = −i[l(l + 1)]1/2. (A 8)

Appendix B. Transformation vectors X t and X r

The resistance matrix (2.1) is obtained from the solution

fi(lm) =

N∑
j=1

∑
l′m′

Fij (lm | l′m′) · cj (l′m′) (B 1)

of the force-multipole equation (3.8) by projecting the generalized friction matrix
F = M−1 onto the subspaces corresponding to the rigid-body motion of the particle
j and the total force and torque of the induced-force distribution on particle i. As
shown in I, the projection can be expressed in the form

ζAB
ij =

∑
lmσ

∑
l′m′σ ′

X(A | lmσ )Fij (lmσ | l′m′σ ′)X(l′m′σ ′ | B), (B 2)

where A, B = t, r . Here X(A | lmσ ) and X(l′m′σ ′ | B) are the projection vectors
defined by the equations

X(t | lmσ ) = δl1δσ0 X̃
t
(m), X(r | lmσ ) = δl1δσ1 X̃

r
(m), (B 3)
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X̃
t
(−1) =

(
2
3
π
)1/2


 1

−i
0


, X̃

t
(0) =

(
2
3
π
)1/2


 0

0√
2


, X̃

t
(1) =

(
2
3
π
)1/2


−1

−i
0


, (B 4)

X̃
r
(m) = −2iX̃

t
(m) (m = −1, 0, 1), (B 5)

and

X(lmσ | A) = X∗(A | lmσ ) (A = t, r). (B 6)

Appendix C. Cartesian basis fields
The Fourier coefficients V ±

kσ (z) in the expression (4.1) for the Cartesian basis fields
are given by the expressions

V −
k0(z) = (32π2)−1/2 [i(1 − 2kz)k̂ + (1 + 2kz)êz]k

−1/2, (C 1a)

V −
k1(z) = (8π2)−1/2 (k̂ × êz)k

−1/2, (C 1b)

V −
k2(z) = (32π2)−1/2 (ik̂ − êz)k

−1/2, (C 1c)

and

V +
k0(z) = (32π2)−1/2 (ik̂ + êz)k

−1/2, (C 2a)

V +
k1(z) = (8π2)−1/2 (k̂ × êz)k

−1/2, (C 2b)

V +
k2(z) = (32π2)−1/2 [i(1 + 2kz)k̂ − (1 − 2kz)êz]k

−1/2, (C 2c)

where k̂ = k/k. The corresponding pressure fields are

p−
k0(r) = (2π2)−1/2η k1/2eik·ρ−kz, p+

k2(r) = (2π2)−1/2η k1/2eik·ρ+kz, (C 3)

and

p−
k1(r) = p−

k2(r) = p+
k0(r) = p+

k1(r) = 0. (C 4)
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